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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-813

ANATLYSIS OF PARTLY WRINKLED MEMBRANES

By Manuel Stein and John M. Hedgepeth
SUMMARY

A theory is derived to predict the stresses and deformations of
stretched-membrane structural components for loads under which part of
the membrane wrinkles. Rather than studying in detail the deformations
in the wrinkled region, the present theory studies average displacements
of the wrinkled material. Specific solutions of problems in flat and
curved membranes are presented. The results of these solutions show
that membrane structures retain much of their stiffness at loads sub-
stantially above the load at which wrinkling first occurs.

INTRODUCTION

Lightweight structures having stretched-membrane components have
many potential applications in space. A membrane by definition has no
bending stiffness and can carry no compressive stress. Accordingly,
when the stress drops to zero, wrinkling may occur over part or all of
the membrane. In order to utilize membrane structural components effi-
ciently, the designer must know the properties of such components in
the range of loading from the onset of wrinkling to final collapse as
well as in the range for which the membrane is unwrinkled.

Based on the premise that a membrane has no bending stiffness and,
hence, can carry no compressive stress, a theory is derived herein to
predict the stresses and deformations of stretched-membrane structural
components, for loads under which part of the membrane wrinkles. Solu-
tions are presented for several illustrative problems in flat and
curved membranes, as follows:

(1) In-plane bending of a stretched rectangular membrane
(2) Bending of a pressurized membrane cylinder
(3) Rotation of a hub in a stretched infinite membrane

Stresses and deformations are presented in egquation form for both the
wrinkled and unwrinkled regions. The results of the three problems



considered are presented in nondimensional plots which show that the
extent of the wrinkled region is much different from the compression
region calculated from the usual theory of elasticity. More impor-
tantly, the plots indicate that considerable stiffness of the membrane
structure is retained at loads substantially sbove the load at which
wrinkling first occurs.

SYMBOLS
a radius of hub
b extent of wrinkled region
f,g arbitrary functions
h width of rectangular membrane
P internal pressure
T radius of cylinder; radial coordinate
t thickness of membrane
u, v displacements in x- and y-directions or r- and 6-directions
W radial displacement of cylinder wall, positive outward
X,y rectangular coordinates
E Young's modulus for material
M bending moment; torque
P load
R radial extent of wrinkled region
T constant tensile stress
C1,Coy « .« constants
ﬁ& constant tensile force per unit length

a angle determining direction of wrinkle




B = tan a

0 angular coordinate
K curvature
A function determining strain in direction perpendicular to
wrinkles
\ Poisson's ratio for material
O rotation of hub
€1,€o principal strains
€xs €y direct strains in rectangular-coordinate directions
7xy shear strain in rectangular-coordinate directions
€y €g direct strains in polar-coordinate directions
7re shear strain in polar-coordinate directions
01505 principal stresses
Gx’ay direct stresses in rectangular-coordinate directions
Txy shear stress in rectangular-coordinate directions
Oy, Og direct stresses in polar-coordinate directions
Tro shear stress in polar-coordinate directions
-
NI
ox oy

THEORY FOR WRINKLED MEMBRANES

A theory is developed in this section for the structural behavior
of wrinkled flat membranes. The membrane considered herein is elastic,
isotropic, has no bending stiffness, and cannot carry compressive stress.



The present theory studies average strains and displacements of the
wrinkled material rather than detailed deformations of each wrinkle.
In terms of the equations given, the present theory is limited in the
sense that average strains must be small compared with unity.

Stresses

To study membrane wrinkling, it is convenient to look first at the
principal stresses. If both principal stresses are positive, the mem-
brane is in tension and thus will not wrinkle. If both principal
stresses are zero, the membrane is unloaded and thus will not wrinkle.
Evidently in a wrinkled membrane one principal stress must be zero and
the other nonzero. The nonzero principal stress may be assumed to act
along the wrinkle. TFor a flat membrane the principal stresses are
given in terms of the stresses in rectangular coordinates by

Oy + Oy Oy - cy) 5
o, = 5 + ( + T

2
_Ox + Oy /(cx - cy> 2
op = = \ . + Ty

From these equations the condition that a principal stress vanish may
be obtained as follows

OxOy = Tiy (1)

where, since compressive stresses are prohibited, both ¢y, and Oy
must be positive. Equation (1) must be satisfied throughout a wrinkled
region. If the nonzero principal stress is o7 and if the corresponding

principal direction is at an angle o to the x-axis, then, from the
well-known relations between the stresses in the rectangular-coordinate
directions and the principal stresses

N
Oy = 01 cosga

gy = 01 sina (2)
Txy = 0y sin a cos o

Of course, equations (2) satisfy equation (1).




The equilibrium equations

éSE . OTy o
ox oy
’ (3)
)
.& + aTXy 0
oy ox

/

together with condition (1) form a set of three equations in the three
unknown stresses. Thus the stresses in a wrinkled region, unlike those
in an unwrinkled region, can be determined independently of strain
compatibility.

Strains and Displacements

Corresponding to the nonzero principal stress o3, the principal
strain € parallel to the wrinkle at each point would be expected to

be

g
=3 (%)

Because of the "over contraction" behavior of a wrinkled membrane in the
direction normal to the wrinkles, a "variable Poisson's ratio" N\ is
defined so that

g
€n = =\ El (5)

The quantity A is an unknown function of the independent varia-
bles and allows an average measure to be made of the €, strain which

would otherwise be either indeterminate or dependent on detailed large-
deflection analysis. At points in a membrane where a wrinkled region
borders on an unwrinkled region, A must equal Poisson's ratio for the
material.

From the relations between the strains in the rectangular-coordinate
directions and the principal strains

_ % o )
I

O. [of

=L _ 3= >
€y =3 ?\E (6)
7xy =2(1 + N) Xy




The preceding equations, through the quantity A, define the average
strains in rectangular coordinates.

Average displacements are defined through the usual strain dis-
placement relations

W
_ v

€y—-a; L (7)

Ty T T

from which follows the equation for compatibility of the strains

> 32
P S s (8)

Byg x> X oy

In terms of the stresses for the wrinkled region, the compatibility
relation becomes

2N DN A
O'X-a—}?-i‘ 2Txyax_ay+ O'yg-y—g =V2(crx+ Uy) (9)

Thus, once the stresses have been determined as discussed in the pre-
vious section, the quantity A may be determined from the compatibility
equation (9) and the strains and displacements from equations (6)

and (7), respectively.

STRESS FIELDS IN WRINKLED MEMBRANES

Before going to solutions of specific problems, it is desirable to
investigate, in general, the stress equations of the theory Just devel-
oped to see what general facts can be deduced about the behavior of
wrinkled-membrane fields. A solution is obtained for the stresses in
a wrinkled-membrane field by solving the equilibrium equations (3) and
equations (2) which replace equation (1) as the condition for the van-
ishing of a principal stress.

Equations (2) and (3) are five equations in five unknowns, and by
substitution from equations (2) into equations (3) they can be reduced




to two equations in two unknowns, any two of the five. It is convenient
to choose as unknowns o, and tan a and to seek a solution for x

and y 1in terms of these unknowns. Thus, with B = tan «, let

X

x(dx, B)
(10)

y = ¥(oxsB)

Differentiation of these equations with respect to x leads to

1o %%, xp

X
- doy, Ox * B dx

_dy 9ox 3y 3p

0 =X 4 95 Ok

- SE; ox OB ox

The following equations result from solution of the preceding equations

for Joy[dx and JB/dx

%% _ 1%
ox J OB
B __ 1
ox J Aoy

éf— QX - 0 95. Similarly, differentiation with respect
do, OB  OJo, OB

to y results in

where J =

BOX - L é}f
Jy J OB
OB _109x
ay J OX

Now, since oy = UXB2 and Txy = oxB according to equations (2),
the equilibrium equations (3) can be written



; (11)

By integration the second equation becomes

y = Bx + £(B) (12)

where f(B3) 1is an arbitrary function of B. This equation is independ-
ent of o, and therefore defines a oy coordinate curve, or since

o = cx(l + 52) it may be considered to be a o] coordinate curve.

Also, in the x,y plane, equation (12) is the equation of a family of
straight lines at an angle o to the x-axis, and therefore o7 acts

along these straight lines. Thus o7 trajectories are straight lines
and since 07 must always act parallel to a wrinkle, it follows that

in a flat stretched membrane, the wrinkles must be straight.

Differentiating equation (12) with respect to B and then sub-
tracting the resulting expression from the first of equilibrium equa-
tions (11) gives

x + £'(B) + ox ox_ 0
0oy,
or
2 (0 = 10

which by integration leads to the general solution of the equilibrium
equations

N
x = B pip)
ax
!
: (13)
_pa(B) .2 (ﬂ)
y =55, 57\

/

where g(B) is an arbitrary function of PB. Thus equations (13)
define the stress field of any wrinkled membrane. However, their




direct application to problems where conditions are specified along
given boundaries in the x,y plane may not be practical, and a more con-
ventional attack on each specific problem may be more appropriate.

EXAMPLE SOLUTIONS

Solutions to three problems are presented in this section by means
of the theory just derived. In the problems solved, first the unwrinkled-
region and then the wrinkled-region stresses and deformations are deter-
mined except for certain constants or functions; finally, continuity of
forces and deformations across the boundary between wrinkled and unwrin-
kled regions determines the values of these constants or functions.

In-Plane Bending of a Stretched Rectangular Membrane

Consider a rectangular membrane of thickness t, as indicated in
the following sketch,

R e it

oot x

which is subjected to load P, moment M, and uniform tension ﬁy as
shown. Under certain combinations of this loading the membrane will
wrinkle along the lower edge. The line y = b defines the edge of the
wrinkled region. Stresses and strains will be independent of x.

The load and moment are related to the oy stresses by

\
h
P=tf oy dy
0

h
h
tJ[ Ux( - —)iy
0 2

L (14)

=
n

y
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With the stresses and strains functions only of y the equilibrium
equations (3) and the compatibility equation (8) become

=0

(15)

Unwrinkled region.- The usual form of the strain-stress relations

holds in the unwrinkled region

€x

€y

TX,
7xy =2(l + V) Ty

- that is,
\

x_ ., ¥

E E

[0} o}

¥y X
<L _ ., = 16
E ' E (16)

From equations (15) and (16) and from the condition of zero shear stress
applied to the membrane, the form of the stresses may be determined as

ox = E(ky + C1) )
N
I
oy = = L (17)
T =0
Y )

where «

The displacements may now

and Cy are constants which will be determined.

be determined from equations (7) and (16)

ﬁy
u = XKy + Cl -V E’E
- (18)
N 2 2
= 2 . _ -k X
v Tt v(n 5 + Cly> K 5 + Co




where Cp 1is a constant and the condition that u =0 at x =0 has
been satisfied.

Wrinkled region.- Evidently for this problem the wrinkles will be
in the y-direction, the stress along the wrinkles oy will be constant,

N

o, = 7?’ and oy = Ty, = 0. These values satisfy equation (1) and the

first two of equations (15).

Therefore, from equations (6),

5 A
€ = _)\ —-}—7
X Et
N
=L
vy T Et (19)
Yxy = Y
where AN 1s a function of y. From the third of equations (15),
e _
dy2
therefore,
J
= - < 2
n= (v C5) 5+ Cs (20)

where 05 is an arbitrary constant and the requirement that A = v’
at y = b has been met.

The displacements u and v can now be found from equations (7)

and (19); thus,
Y Y
Etx[("" c5)€+05:|

N 2
_E%EH(V-CB) 22%]

where u and v have been made to vanish at the origin as a point of
reference.

[
n
i
|

(21)

<
]
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Continuity of u and v displacements at y = b leads to

P

Ci =
2
b
= _ = 22
Co VK 5 L (22)
C3 = v + kb EE
Ny
/
From equations (14) with ox = O in the interval 0<y < b
b 2P
2 =1 - (23)
h kEth®
and finally
M_ .2 |=E (2k)
Pn 5 Y kEth®
The overall curvature of the membrane can be identified as the
2
constant «k since é—% = -k so that equation (24) may be considered
dx

to relate moment to curvature. A plot of this relationship is presented

in figure 1. Wrinkling starts at the moment M = %? (according to egua-

tions (23) and (24) with b = 0). From these equations with % =1, the
maximum moment attainable is three times the wrinkling moment, and, as
may be seen from figure 1, the membrane has considerable stiffness for

meoments up to about twice the wrinkling moment.

The extent of the wrinkled region b/h for the membrane is also
presented in figure 1 and is compared in figure 2 with the corresponding
extent of the region of compressive stress in an elastic plate as
obtained by conventional elasticity theory. Except for a small region
near the wrinkling load, the extent of the regions are quite different.
The membrane is completely wrinkled at the finite maximum moment Ph/2,
whereas only nhalf of the plate is in compression when it 1s subject to
an infinite moment.
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Bending of a Pressurized Membrane Cylinder

The problem of the bending of a pressurized membrane cylinder is
taeken up at this point because of its similarity in concept with the
preceding problem. This cylinder problem requires the extension of the
wrinkled-flat-membrane theory already presented to the case of a cylin-
drical curved membrane. This extension is made as the problem is
developed.

Consider a membrane cylinder of radius r and thickness t sub-

Ject to an internsal pressure p, an axial load P, and bending moment M
with coordinates as indicated in the following sketch:

< )

The loadings P and M may be defined by

enr W
P ='tJf ox Ay
0

3 (25)

2nr
M=—rtf oy cos L dy
0 r

/

It is postulated that wrinkling occurs in the region from y = -b to
¥y = b. This behavior may be observed in very thin cylinders as illus-
trated in figure 3 which shows a 0.0005-inch-thick 3-inch-radius Mylar
cylinder subject to the kind of loading considered in this problem.
Again, as in the previous problem, stresses and strains will be inde-
pendent of x. No account will be taken of change in pressure due to
other loadings.

In addition to the two equilibrium equations (5), which remain
unchanged, a third equilibrium equation must be considered for this
curved-membrane problem. The appropriate equation for a cylindrical
membrane is the nonlinear equation:

o[, P, s P, 9 LE
- <°x 2 + 2Txy 5% oy + Oy 572 T (26)

where W 1is the normal displacement, positive outward.



14

Corresponding strain-displacement

relations are

oo
X x
€y = ov + ¥ ’ (27)
dy T
XY 3y ox J
so that the compatibility equation is
2 2 2
5(—:X+5€y =87xy ia.?w (28)
ayE 3x2 0x 0y T 342

For the present problem the strains are functions only of y; thus the

compatibility relation is simply

2
dex 1 d°w (29)
2 T N2 9
dy X
From this expression it can be deduced that w 1is parabolic in x. It

follows from equations (27) that v 1is also parabolic in x, and u is
linear in x. Also v and w are symmetric about x =0 and u is
antisymmetric. Therefore,
u = xuy(y)
v = vy (y) + xPvp(y) (30)
1\Y oly) ¢
w = w (y) + x2ws(y)
1 2\

It would be expected that the x“wo(y)
term so that

Wg(Y) =

s

where «k
action of the bending moment M.

cos

/

term would be the simple bending

(31)

Bi<

may be interpreted as the curvature of the cylinder under the
Since there is no shear stress applied,
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the first of the equilibrium equations (3) yields - = 0 and, hence,

Xy

Txy = 0. Thus, from equations (27), (29), and (31),
vo(y) = - % sin % (32)
uy(y) = -kr cos % + Cp (33)

The strains (eqs. (27)) may now be written

€x = -KI COS %+ Cq W
_ ' Wl(Y)
Txy = 0

/

There has been no specialization to the wrinkled or unwrinkled regions.

Unwrinkled region.- In the unwrinkled region the stress-strain
relations (16) apply. The stresses can be written from the determined

strains (egs. (34)) as:

E i )
oy = — ~-KT COS % + Cy + vv]'_(y) + % Wl(}’)_l
1 - v: L -
[ w L
P vi(y) + 1(y) - vkr cos ¥ + vCl:I (35)
y 2 r
1 - v L
Txy = 0 )

In order to satisfy the second of the equilibrium equations (3), Gy
must equal a constant, say ﬁy/t, and therefore oy can be written
N

_ Y N
o, = E(—nr cos % + Cl) v F (36)
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From

ﬁ& = I—%ECE {}i(y) + WliY) - VKT cos % + VC;} (37)

end from the third equilibrium equation (eg. (26)), vy(y) and w(y)

may be determined. However, it should be noted that, within the range
of validity of the theory, the deflection of the "neutral axis" of the

cylinder, KX2/2, must be everywhere negligibly small compared with the
radius. Equation (26) becomes, after substitution for the stresses and
the deflection,

N - _ _ 2
3¥ - [%t(—nr cos % + Cl) + VN?}K cos % + N&w{(y) - N,k 5_5 cos % =P

(38)

Since KX2/2 is negligible compared with r, it follows that the last
term on the left-hand side of the preceding equation may be neglected
in comparison with the first term. Equation (38) may then be solved
directly for wy(y); thus,

2 3
wo(y) = 1 ;i + EE k2r (y - =r) - EE z K2COS L
1 TOR®, on 2 N, \2 d
J y y
+ (Eﬁ Cl-+x>nr2cos Ly Cs (%9)
N, r

where the constants of integration have been adjusted for w to be
symmetric about y = #nr.

From equation (37) wvy(y) can be found now that wy(y) is known.
Hence,

5 - ar)?
v(y) = - E& Clnrgsin Ly E§—<£> kPsin 2 _ (L. B, Bt 2, &) )
y Ty T Ny Ay 6r

ZII

2 _ C
+ (i—ﬁzz— Ny - vCy - 3£>(y - 7r) (ko)
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where the condition that v is antisymmetric about y = wnr has been
used to determine the constant of integration.

Wrinkled region.- In the wrinkled region oy = 0 and Oy is con-

stant and A replaces v in the stress-strain law, so that by com-
parison with equation (36)

A= <nr cos % - Cl) (41)

For AN toequal v at y =#2b
Cq; = Kr cos b_ ¥ (42)
1 T

From equation (26) with the same term neglected as for the unwrin-
kled region

2

1 P\
=[=_- =—\Z_ + C )
"1 (r Ny>2 TS (43)

where one constant of integration has been set equal to zero because Ww
is symmetric about y = 0. In order that w be continuous at y = %b,

/1 P\b? . Et r5( ob
05——<———)——+_—-£é—-l+gcos?>

L.z
Ny Ny
o 2
+c2+<l-£+Et “><b"“’) (4
r N N 2 2r
N, of
Ny

In the wrinkled region €y

equations (34) v1(y) can be found now that w1(y) is known:

= == thus, from the ey relation of
Et

Vl(y) = ‘(; - §;>6r + Bt /7 (45)

where the constant of integration has been dropped since v 1is anti-
symmetric about y = 0. For v to be continuous at y = *b,
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3
+ EE;-n?&)ﬁfL:-lﬂiL-
oN 6b

N c b -
- (E% - 1; - VKT cOs % o nr) (L46)

‘The constants Co and C5 may now be determined from the two relations
between them just given (egs. (4k4) and (46)).

The axial applied load P and the applied bending moment M can
be determined according to equations (25) from the stresses independently
of the displacements (note that any end pressure load must be included
in P):

_ 2 . b b b
P = 2Etr n{%ln F + ( - ?>cos %} (%7)

_ 3 b 1l ... 2b
M—Etrm(ﬂ- 2+ 1 sin 20) (48)

The equations for P and M thus determine b and k.

A nondimensional plot of the moment-curvature relationship is pre-
sented in figure 4. As in the previous problem, wrinkling does not
appreciably decrease stiffness until & major portion of the cylinder
has wrinkled. The cylinder will support a moment equal to twice the
wrinkling moment.

The extent of the wrinkled region is also presented in figure 4
and is compared in figure 5 with the extent of the compression region
in a cylindrical shell subject to the same loading. Except for a small
region near the wrinkling load the extent of the regions are very dif-
ferent. The membrane is completely wrinkled at its (finite) maximum
monent, whereas the shell is in compression for only half its circum-
ference as the moment approaches infinity.

Rotation of a Hub in a Stretched Infinite Membrane

A hub of radius a is attached to a membrane stretched in uniform
stress T, and the hub is rotated by a torque M. As the torque is
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increased, it is postulated that wrinkles begin to form symmetrically
around the hub out to some radius R; the region grows as the torque
increases. Stresses, strains, and displacements are radially symmetric.
A photograph of the symmetrical wrinkle pattern due to rotation of a
hub centrally located in a circular stretched membrane is shown in
figure 6.

For radially symmetric stresses the equilibrium equations are

= * = =0
| (49)
dTre 2Tre J
+ ——— =0
dr r
From integration of the second equilibrium equation
- M
Trg &~ (50)

2xret

where the constant has been adjusted to satisfy the torque shear stress

relationship
2n
M= -t f T 47248
0

Strain-displacement relations for axisymmetric deformations are

_du w
Er—a

=7 L (51)
ee—? 5
y . = dv v
® G T

dr %)
Thus, compatibility of the strains requires that

€r = é%(ree) (52)

Unwrinkled region.- In the unwrinkled outer region r > R the con-
ventional strain-stress law holds
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Oy Og h
Er = -i:— -V -E—:
o (e
€g = —f}e_ - Vv —EI—‘ 4 (53)
T
g = 2(1 + V)fggJ

The first equilibrium equation provides a relation between oy
and Og- Another such relation is obtained by substitution of the

expressions for the direct strains (5%) into the compatibility equa-
tion (52). Elimination of g between these relations gives

2
d Oy dO’r
=0 b
r—5 + 35 (54)
{
so that
C1
g, =—=+ T
r2
(55)
C
1
Cg = - —& + T
r2

where Cl is a constant and the conditions that o and Og approach

the constant T as r — « have been satisfied.

Displacements that correspond to these stresses may be obtained
from equations (53) and (51):

c1(1 + v) Tr\
1 v
u = - — + (l - V)if
> (56)
1+ v M
- 2n Etr
J

for which the condition was used that v must vanish as r — .

Wrinkled region.- In the inner reglon a < r < R, the counterpart

of the condition for zero principal stress (eq. (1)) in polar coordinates
is
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2
Urce = Tre (57)
which gives
2
M 1
og = = (58)
0 ]
Yx2tert Op

The first of the equilibrium equations (49) may now be written in terms

of Op alone

—+ % - == =0 (59)

2
1 M
0‘ S C2 - ———— (60)
r T
hnetgrg
From equation (58)
2
9 = Dzdz - (61)
hPtZr> NG
Mneterg
For o to be continuous at r =R
2 ‘c >2
M 1
Ch = ————— + |{=+ TR (62)

The equations corresponding to the strain-stress relations (6) are

.
_ Op \ Og
T
o a
w-2-2Z ¢ (63)
_ Tro
Tre = 2+ N5 |

where A 1is an unknown function of r. From the compatibility equa-
tion (52) and equilibrium equations (49)
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@:—l i(ro’)_;

dr ro. gr\ © r
or

2,2~ .2
')\=l 1 —_oguﬁt02r_
2 N 2t2C 2 Me
;R et

M2

where the constant 05 is determined so that A =

(64)

1> + Cxz (65)

v at r = R, that 1s,

L2t2CoRE
05 = v - % 1 + % log(———7§—g—— -1 (66)
L®t2CoR? M

1
M2

According to the strain-deformation equations

(51) the deformations

may be written with M positive:
\
hn2t202r2 1 hnetgcgrg
u = m + log - 1} - 205
nEtr M2 hﬂgtECQrg M2
e
> (67)
4P2Cor2 2
v = 1+ 205 - log|———m—= - + Cyr
ll-ﬂEtI‘ M2

-~ J
The remaining constants are determined by the conditions that the u
and v displacements be continuous at r = R; thus

2rtC\2 L Rt2moRY
=—3 -1
M M
(68)
1 1
CLI- - —
Re b2t 20oR2
M2

/

At the hub of radius a the displacement u
basis that the membrane is stretched before attachi

is determined on the
ng the hub. The
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boundary condition is then u(a) = il_:i;QEés which yields the following
transcendental equation:
(1- vITe M |WnotP02a® 1 ) 1
M2 M2
haPt20,R2 - M2 (69)
- log - 2v 9
4n2t202a2 Y

from which the extent R of the wrinkled region may be found.

The tangential displacement at the edge of the hub divided by the
radius of the hub is the rotation of the hub ¢. A nondimensional plot
of the torque-rotation relationship is presented in figure 7. It is
seen that the wrinkled stretched membrane has considerable stiffness in
resisting this kind of loading, and the torque may increase indefinitely.
The extent of the wrinkled region R is also presented in figure T, and
in figure 8 it is compared with the extent of the region where a princi-
pal compressive stress exists in a plate subjected to the same loading.
Except near the wrinkling torque the regions are quite different.

It is of interest to determine the direction of the wrinkles. For
polar coordinates, equations (2) pecome
2

01‘ = Ul cos

c 2
oy sin“a

"

O
Tre = O'l sin a cOs

where here o is the angle wrinkles make with radial lines. For this
problem, then, a is given by

o 2
tana = =3 = 2M2 2
Or 4Pt Cor® - M

or

(70)

sj_nq,=_.__M__
Eﬂtuaér
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As illustrated in figure 6, the wrinkles are neither radial nor tangent
to the hub.

CONCLUDING REMARKS

A theory has been derived for the representation of the structural
behavior of wrinkled membranes. The theory is based on the equilibrium
equations of the theory of elasticity but requires that one of the prin-
cipal stresses vanish; the theory makes use of the usual strain-
displacement relations but permits "over contraction" in the direction
of the vanishing stress by replacing Poisson's ratio by an arbitrary
function. Thus in the wrinkled region instead of examining deformations
in detail, average deformations are obtained. The requirement that one
of the principal stresses vanish introduces a nonlinear relation, but
makes the wrinkled-membrane problem "statically determinate" so that
stresses may be determined independently of displacements. A general
solution may be written for stresses from which it can be proved that
wrinkles in a flat membrane must be straight.

. Three basic problems have been solved which illustrate wrinkled-

" membrane behavior as represented by the theory. In particular, it is
shown that membrane structures retain much of their stiffness at loads
substantially above the load at which wrinkling first occurs.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., April 10, 1961.
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Figure 1.- Moment-curvature relationship for in-plane bending of a
stretched rectangular membrane.




26

| .0
.8
Extent of wrinkled
region in membrane
.6
b —_—
h K
[
1
A /
I
2 Extent of compression
| region in\plote
]

1 | | /\/ 1
0 2 A .8 .8 1.0 ©

2M

h

Figure 2.- Comparison of wrinkled region in stretched rectangular mem-
brane subject to in-plane bending with compression region in rectan-
gular plate with same loading.
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Figure 3.- Photograph of wrinkling of pressurized Mylar cylinder in
bending.
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Figure 4.- Moment-curvature relationship for the bending of a pressurized
membrane cylinder.




<

29

1.0~
.8 —
Extent of wrinkled
region in membrane
.6
b
T !
]
)
A4 /
{
’ Extent of compression
region in shell
l | ! /\/
0 .2 .4 .6 .8 .0
M
Pr

Figure 5.- Comparison of

wrinkled region in pressurized cylindrical mem-

brane in bending with compression region in cylindrical shell with

same loading.
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Figure 6.- Wrinkles due to rotation of a hub in a stretched circular
Mylar sheet.
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Figure 7.- Rotation due to the torque of & hub in a stretched infinite
membrane (v = 1/3).
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Figure 8.- Comparison of wrinkled region in stretched infinite membrane
having hub subject to torsion with region of compressive principal
stress in plate with same loading.

NASA - Langley Field, Va.  [,-1526




